Preparation of stable magnetic nanofluids containing Fe3O4@PPy nanoparticles by a novel one-pot route
نویسندگان
چکیده
Stable magnetic nanofluids containing Fe3O4@Polypyrrole (PPy) nanoparticles (NPs) were prepared by using a facile and novel method, in which one-pot route was used. FeCl3·6H2O was applied as the iron source, and the oxidizing agent to produce PPy. Trisodium citrate (Na3cit) was used as the reducing reagent to form Fe3O4 NPs. The as-prepared nanofluid can keep long-term stability. The Fe3O4@PPy NPs can still keep dispersing well after the nanofluid has been standing for 1 month and no sedimentation is found. The polymerization reaction of the pyrrole monomers took place with Fe3+ ions as the initiator, in which these Fe3+ ions remained in the solution adsorbed on the surface of the Fe3O4 NPs. Thus, the core-shell NPs of Fe3O4@PPy were obtained. The particle size of the as-prepared Fe3O4@PPy can be easily controlled from 7 to 30 nm by the polymerization reaction of the pyrrole monomers. The steric stabilization and weight of the NPs affect the stability of the nanofluids. The as-prepared Fe3O4@PPy NPs exhibit superparamagnetic behavior.
منابع مشابه
Applying a suitable route for preparation Fe3O4 nanoparticles by Ammonia and investigation of their physical and different magnetic properties
Iron oxide nanoparticles were synthesized by coprecipitation method using ammonia as precipitation agent. Most researchers usually add ammonia into the iron salt solution but in this work the salt solution drop wise has been added to the ammonia and the new obtained results were compared with those of other researches. Magnetic properties of nanoparticles were measured by VSM. The effect of rea...
متن کاملApplying a suitable route for preparation Fe3O4 nanoparticles by Ammonia and investigation of their physical and different magnetic properties
Iron oxide nanoparticles were synthesized by coprecipitation method using ammonia as precipitation agent. Most researchers usually add ammonia into the iron salt solution but in this work the salt solution drop wise has been added to the ammonia and the new obtained results were compared with those of other researches. Magnetic properties of nanoparticles were measured by VSM. The effect of rea...
متن کاملA simple way to prepare Au@polypyrrole/Fe3O4 hollow capsules with high stability and their application in catalytic reduction of methylene blue dye.
Metal nanoparticles are promising catalysts for dye degradation in treating wastewater despite the challenges of recycling and stability. In this study, we have introduced a simple way to prepare Au@polypyrrole (PPy)/Fe3O4 catalysts with Au nanoparticles embedded in a PPy/Fe3O4 capsule shell. The PPy/Fe3O4 capsule shell used as a support was constructed in one-step, which not only dramatically ...
متن کاملDesign, Optimization Process and Efficient Analysis for Preparation of Copolymer-Coated Superparamagnetic Nanoparticles
Magnetic nanoparticles (MNPs) are very important systems with potential use in drug delivery systems, ferrofluids, and effluent treatment. In many situations, such as in biomedical applications, it is necessary to cover inorganic magnetic particles with an organic material, such as polymers. A superparamagnetic nanocomposite Fe3O4/poly(maleic anhydride-co-acrylic acid) P(MAH-co-AA) with a core/...
متن کاملSynthesis and Characterization of γ-Fe2O3@HAp@β-CD Core-Shell Nanoparticles as a Novel Magnetic Nanoreactor and Its Application in the One-Pot Preparation of β-azido Alcohols, β-nitro Alcohols, and β-cyanohydrins
In this study, β-cyclodextrin(β-CD) supported, hydroxyapatite encapsulated γ-Fe2O3 (γ-Fe2O3@HAp@β-CD) was successfully prepared and evaluated as a solid-liquid phase transfer catalyst and also a molecular host system and nanoreactor for the nucleophilic ring-opening of epoxides in water for the preparation of β-azido alcohols, β-nitro alcohols, an...
متن کامل